Abstract

Recurrent glioblastomas are frequently found near subventricular zone (SVZ) areas of the brain where neural stem cells (NSCs) reside, and glioblastoma-derived extracellular vesicles (EVs) are reported to play important roles in tumour micro-environment, but the details are not clear. Here, we investigated the possibility that NSCs are involved in glioblastoma relapse mediated by glioblastoma-derived EVs. We studied changes to NSCs by adding glioblastoma-derived EVs into a culture system of NSCs, and found that NSCs differentiated into a type of tumour-promoting cell. These transformed cells had distinguished proliferation activity, a high migration rate, and clone-forming ability revealed by CCK-8, wound healing and soft agar clone formation assays, respectively. In vivo assays indicated that these cells could accelerate tumour formation by Ln229 cells in nude mice. Moreover, to explore the mechanisms underlying NSC transformation, single cell transcriptome sequencing was performed; our results suggest that several key genes such as S100B, CXCL14, EFEMP1, SCRG1, GLIPR1, HMGA1 and CD44 and dysregulated signalling may be important for the transformation of NSCs. It is also indicated that NSCs may be involved in glioblastoma recurrence through EV release by glioblastoma in this work. This could help to illuminate the mechanism of glioblastoma relapse, which occurs in a brief period after surgical excision, and contribute to finding new ways to treat this disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.