Abstract

We report the first results from a deep near-infrared campaign with the Hubble Space Telescope to obtain late-epoch images of the Hubble Ultra Deep Field, 10–15 yr after the first epoch data were obtained. The main objectives are to search for faint active galactic nuclei (AGN) at high redshifts by virtue of their photometric variability and measure (or constrain) the comoving number density of supermassive black holes (SMBHs), n SMBH, at early times. In this Letter, we present an overview of the program and preliminary results concerning eight objects. Three variables are supernovae, two of which are apparently hostless with indeterminable redshifts, although one has previously been recorded as a z ≈ 6 object precisely because of its transient nature. Two further objects are clear AGN at z = 2.0 and 3.2, based on morphology and/or infrared spectroscopy from JWST. Three variable targets are identified at z = 6–7 that are also likely AGN candidates. These sources provide a first measure of n SMBH in the reionization epoch by photometric variability, which places a firm lower limit of 3 × 10−4 cMpc−3. After accounting for variability and luminosity incompleteness, we estimate n SMBH ≳ 8 × 10−3 cMpc−3, which is the largest value so far reported at these redshifts. This SMBH abundance is also strikingly similar to estimates of n SMBH in the local Universe. We discuss how these results test various theories for SMBH formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.