Abstract

Abstract Glide-snow avalanches release due to a loss of friction at the snow–ground interface, which can result in large avalanches that endanger infrastructure in alpine regions. The underlying processes are still relatively poorly understood, in part due to the limited data available on glide processes. Here, we introduce a pixel-based algorithm to detect glide cracks in time-lapse photographs under changing illumination and shadow conditions. The algorithm was applied to 14 years of time-lapse images at Dorfberg (Davos, Switzerland). We analysed 947 glide-snow events at a high-spatial (0.5 m) and temporal (2–15 min) resolution. Avalanche activity and glide-crack opening dynamics were investigated across timescales ranging from seasonally to hourly. Events were separated into surface (meltwater percolation) and interface events (no meltwater percolation). The results show that glide activity is highly variable between and within seasons. Most avalanches released without crack formation or within 24 h after crack opening, and release was favoured in the afternoon hours. Glide rates often showed a stick–slip behaviour. The acceleration of glide rates and non-constant increases in glide crack aspect ratio were indicators for avalanche release. This comprehensive dataset provides the basis for further investigations into glide-snow avalanche drivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.