Abstract

Abstract As the head/disk spacing continues to decrease, the demand for thin film disks with glide capability below 20 nm becomes more pressing. As a consequence, the design of such media requires an ever increasing control of the surface topography to a nanometer level. This paper is an attempt to analytically predict the intrinsic glide capability of a textured disk, given the knowledge of its peak height distribution, as measured by a surface profilometer. This model also takes into account the long wavelength component of the topography, or waviness, by treating it as an independent variable leading to a broadening of the peak height distribution. This analysis also predicts relationships between various roughness parameters. Experimental data obtained on a total of 27 media surfaces of various types compare favorably to the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.