Abstract

Sulfonylurea drugs are used in the treatment of type 2 diabetes. The mechanism of action of sulfonylureas is to release insulin from pancreatic cells and they have been proposed to act on insulin-sensitive tissues to enhance glucose uptake. The goal of the present study was to test the hypothesis that gliclazide, a second-generation sulfonylurea, could enhance insulin signaling in insulin-resistant skeletal muscle cells. We demonstrated that gliclazide enhanced insulin-stimulated insulin receptor tyrosine phosphorylation in insulin-resistant skeletal muscle cells. Although insulin receptor substrate-1 tyrosine phosphorylation was unaffected by gliclazide treatment, phosphatidylinositol 3-kinase activity was partially restored by treatment with gliclazide. No increase in 2-deoxyglucose uptake in insulin-resistant cells by treatment with gliclazide was observed. Further investigations into the mitogen-activated protein kinase (MAPK) pathway revealed that insulin-stimulated p38 phosphorylation was impaired, as compared with extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), which were phosphorylated normally in insulin-resistant cells. Treatment with gliclazide could not restore p38 phosphorylation in insulin-resistant cells. We propose that gliclazide can regulate part of the insulin signaling in insulin-resistant skeletal muscle, and p38 could be a potential therapeutic target for glucose uptake to treat insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.