Abstract
Although glibenclamide is an oral hypoglycemic agent used in type 2 diabetes, skeletal muscle wasting has been reported as a side effect. To understand how to reduce this side effect, we determined whether glibenclamide induces endoplasmic reticulum (ER) stress in skeletal muscle cells and which myokine expression changes at this time. The ER chaperone genes do not show a significant change by glibenclamide, but the ER stress sensor genes are upexpressed approximately twice, and those downstream [ATF6 (activating transcription factor 6) fragmentation, eIF2α (eukaryotic initiation factor-2α) phosphorylation, and XBP1 (Xbox DNA-binding protein) mRNA splicing] are activated. Additionally, the myokine gene expression was up- or downregulated by glibenclamide. These results will serve as useful data for overcoming the side effects of sarcopenia caused by glibenclamide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biology and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.