Abstract

Asymmetric stem cell division (ASCD) is a key mechanism in development, cancer, and stem cell biology. Drosophila neural stem cells, called neuroblasts (NBs), divide asymmetrically through intrinsic mechanisms. Here, we show that the extrinsic axon guidance cues Netrins, secreted by a glial niche surrounding larval brain neural stem cell lineages, regulate NB ASCD. Netrin-Frazzled/DCC signaling modulates, through Abelson kinase, Robo1 signaling threshold levels in Drosophila larval brain neural stem and progenitor cells of NBII lineages. Unbalanced Robo1 signaling levels induce ectopic NBs and progenitor cells due to failures in the ASCD process. Mechanistically, Robo1 signaling directly impinges on the intrinsic ASCD machinery, such as aPKC, Canoe/Afadin, and Numb, through the small GTPases Rac1 and Cdc42, which are required for the localization in mitotic NBs of Par-6, a Cdc42 physical partner and a core component of the Par (Par-6-aPKC-Par3/Bazooka) apical complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call