Abstract

Neurogenesis is nearly completed after birth, whereas gliogenic activities remain intense during the postnatal period in the developing rat cortex. These include involution of radial glia, proliferation of astrocytes and oligodendrocytes and myelin formation. Little is known about the effects of hypoxic–ischemic (HI) injury on these critical postnatal processes. Here we explored the glial reactions to mild HI injury of the neonatal rat cerebral cortex at P3. We show that the HI lesion results in disruption of the normal radial glia architecture, which was paralleled by an increase in GFAP immunopositive reactive astrocytes. The morphology of these latter cells and the fact that they were immunolabelled for both nestin and GFAP suggest an accelerated transformation of radial glia into astrocytes. In addition, BrdU/GFAP immunostaining revealed a significant increase of double-labelled cells indicating an acute proliferation of astrocytes after HI. This enhanced proliferative activity of astrocytes persisted for several weeks. We found an elevated number and increased mitotic activity of both NG2-positive oligodendrocyte progenitors and RIP-positive oligodendrocytes after injury. These findings imply that glial responses are central to cortical tissue remodelling following neonatal ischemia and represent a potential target for therapeutic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.