Abstract

Multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) result in inflammatory white matter lesions in the CNS. However, information is sparse with regard to the effects of autoimmune demyelinating disease on gray matter regions. Therefore, we studied the late effects of chronic EAE in C57BL/6 mice on the spinal cord gray matter using immunohistochemistry. Here, EAE induced marked astrocytic, microglial, and macrophage activation in the ventral horn gray matter, without any motoneuron loss. Activated caspase-3 was also increased in the ventral horn gray matter. Furthermore, activated poly (ADP-ribose) polymerase (PARP), another apoptotic marker, co-localized with myelin basic protein (MBP) of oligodendrocyte processes, but not with the oligodendroglial cell body marker, adenomatous polyposis coli gene clone CC1 (APC-CC1), or with neurofilament marker (RT-97) or synaptophysin of axonal arbors. However, there was no associated increase in the number of terminal deoxynucleotidyl transferase (TdT) mediated-dUTP nick end labeling positive nuclei in the spinal cord gray matter of EAE mice. In addition, co-localization of MBP and the low-affinity neurotrophin receptor, p75, was demonstrated, further supporting the notion of apoptotic oligodendrocyte process degeneration in the gray matter of EAE mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.