Abstract

The NO-cGMP pathway has emerged as a neuroprotective signaling system involved in communication between neurons and glia. We have previously shown that axotomy or nerve growth factor (NGF)-deprivation of dorsal root ganglion (DRG) neurons leads to increased production of NO and at the same time an increase in cGMP production in their satellite glia cells. Blockade of NO or its receptor, the cGMP synthesizing enzyme soluble guanylate cyclase (sGC), results in apoptosis of neurons and glia. We now show that co-culture of neonatal DRG neurons with either Schwann cells pre-treated with an NO donor or a membrane-permeant cGMP analogue; or neurons maintained in the medium from Schwann cell cultures treated in the same way, prevents neuronal apoptosis. Both NO donor and cGMP treatment of Schwann cells results in synthesis of NGF and NT3. Furthermore, if the Schwann cells are previously infected with adenoviral vectors expressing a dominant negative sGC mutant transgene, treatment of these Schwann cells with an NO donor now fails to prevent neuronal apoptosis. Schwann cells treated in this way also fail to express neither cGMP nor neurotrophins. These findings suggest NO-sGC-cGMP-mediated NGF and NT3 synthesis by Schwann cells protect neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.