Abstract

Immunohistological and ultrastructural studies were carried out on normal and regenerating spinal cord of the gymnotid Sternarchus albifrons, and in the brain and spinal cord of the goldfish Carassius auratus, to examine the distribution of glial fibrillary acidic protein (GFAP) in these tissues. Sections of normal goldfish brain and spinal cord exhibited positive staining for GFAP. In normal Sternarchus spinal cord, electron microscopy has revealed filament-filled astrocytic processes; however, such astrocytic profiles were more numerous in regenerated cord. Likewise, while normal Sternarchus spinal cord showed only a small amount of GFAP staining, regenerated cords were strongly positive for GFAP. Positive staining with anti-GFAP was observed along the entire length of the regenerated cord in Sternarchus, and was especially strong in the transition zone between regenerated and unregenerated cord. Both regeneration of neurites and production of new neuronal cell bodies occur readily in such regenerating Sternarchus spinal cords (Anderson MJ, Waxman SG: J Hirnforsch 24: 371, 1983). These results demonstrate that the presence of GFAP and reactive astrocytes in Sternarchus spinal cord does not prevent neuronal regeneration in this species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.