Abstract

The glial response to Wallerian degeneration was studied in optic nerves following unilateral enucleation in immature rats, aged 21 days old (P21). The three-dimensional morphology of dye-filled glia was determined in intact nerves, at post-enucleation day 21 in normal nerves from untreated P21 rats, by correlating laser scanning confocal microscopy and camera lucida drawings of single cells. In normal and transected nerves, the majority of dye-filled cells comprized astrocytes (54% and 65%, respectively). In normal P21 nerves, the predominant astrocyte form had a complex stellate morphology and had a centrally-located cell body from which branching processes extended randomly. Two other distinct forms were transverse and longitudinal astrocytes, which had a polarized process extension in a plane perpendicular or parallel to the long axis of the nerve, respectively. These forms were recognized in transected nerves also, but astrocytes in transected nerves had a simple morphology on the whole, and extended few, dense processes which branched infrequently. Quantitative analysis of astrocyte morphology confirmed that individual astrocytes underwent considerable remodelling in response to Wallerian degeneration. A prominent reaction was that astrocytes had withdrawn radial processes and extended a greater proportion of processes longitudinally, parallel to the long axis of the nerve and along the course of degenerated axons. A further, notable feature of transected nerves was the development of novel longitudinal forms and of hypertrophic astroglia. These results indicated that all astrocytes became reactive following enucleation and that glial scar formation was not the function of a single astrocyte subtype. Oligodendrocytes in transected nerves had lost their myelin sheaths and appeared as small cells with numerous bifurcating processes which extended radially, but a small number of oligodendrocytes were recognized which apparently supported myelin sheaths (9%, compared to 40% in normal nerves). In addition, there was a significant population of indeterminate cells in transected nerves (26%, compared to 6% in normal nerves) and, although some of these were identified as microglia/macrophages, it was concluded that many were likely to be dedifferentiated oligodendrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call