Abstract

Numerous evidence demonstrates that astrocytes, a type of glial cell, are integral functional elements of the synapses, responding to neuronal activity and regulating synaptic transmission and plasticity. Consequently, they are actively involved in the processing, transfer and storage of information by the nervous system, which challenges the accepted paradigm that brain function results exclusively from neuronal network activity, and suggests that nervous system function actually arises from the activity of neuron-glia networks. Most of our knowledge of the properties and physiological consequences of the bidirectional communication between astrocytes and neurons resides at cellular and molecular levels. In contrast, much less is known at higher level of complexity, i.e. networks of cells, and the actual impact of astrocytes in the neuronal network function remains largely unexplored. In the present article, we summarize the current evidence that supports the notion that astrocytes are integral components of nervous system networks and we discuss some functional properties of intercellular signalling in neuron-glia networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.