Abstract

Glial cell line derived neurotrophic factor (GDNF) has been shown to be a potent neurotrophic factor for dopamine neurons in culture and to prevent the loss of substantia nigra dopamine neurons following in vivo lesions with 6-hydroxydopamine (6-OHDA). In this study we used mesencephalic cultures containing both neurons and glia to examine whether GDNF protects dopamine neurons from 6-OHDA toxicity in vitro. Our data show that GDNF does not prevent the loss of dopamine neurons caused by treatment with 6-OHDA in vitro. However, continuous exposure to GDNF increases the high affinity dopamine uptake in cultures treated with 6-OHDA, suggesting that it enhances the growth of damaged dopamine neurons. We also show that in vitro treatment with 6-OHDA causes widespread cell death in mesencephalic cultures, which is not restricted to dopamine neurons. The lack of selectivity of 6-OHDA toxicity when applied in vitro may explain the inability of GDNF to prevent the loss of dopamine neurons in mesencephalic cultures. The stimulation of the growth of 6-OHDA damaged dopamine neurons by GDNF, observed in our study, suggests that it may prove beneficial in the treatment of injured dopamine neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call