Abstract

Glial cell-derived neurotrophic factor (GDNF) is essential for the development of the enteric nervous system during embryogenesis. We have observed the presence of Gdnf transcripts in the gastrointestinal tract of adult mice, and its early up-regulation after inflammation. We therefore investigated the effects of GDNF on enteric neuronal function in vitro. Primary neuronal cultures were established from isolated myenteric plexi, and characterized by immunostaining and Ca(2+) imaging. Gene expression of several ion channels was analyzed by quantitative polymerase chain reaction (PCR) and the electrophysiologic properties of the neurons were studied by patch clamp. GDNF enhanced synaptogenesis and intercellular communication in primary myenteric neuronal cultures. Expression profiling revealed that GDNF exposure results in an up-regulation of Htr3a expression in the cultures and a similar increase was observed in inflamed colonic tissue where Gdnf expression was also increased. The increased Htr3a expression was accompanied by a functional increase in the response of neurons to acute challenge with 5-hydroxytryptamine (5-HT). GDNF treatment also caused inhibition of delayed rectifying voltage-gated potassium (Kv) currents, which correlated with the up-regulation of Htr3a and 5-HT-induced responses. Furthermore, pharmacologic blockade of Kv channels mimicked the effect of GDNF by increasing Htr3a expression as well as enhancing 5-HT-induced responses in the cultured myenteric neurons. GDNF promotes synaptic communication in cultured myenteric neurons. It also up-regulates 5-HT(3a)-receptor expression via modulation of Kv channel activity. Up-regulation of Gdnf after gastrointestinal inflammation might play an important role in the pathophysiology of gastrointestinal diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.