Abstract

BackgroundNeuronal and glial cell interaction is essential for synaptic homeostasis and may be affected in Alzheimer’s disease (AD). We measured cerebrospinal fluid (CSF) neuronal and glia markers along the AD continuum, to reveal putative protective or harmful stage-dependent patterns of activation.MethodsWe included healthy controls (n = 36) and Aβ-positive (Aβ+) cases (as defined by pathological CSF amyloid beta 1-42 (Aβ42)) with either subjective cognitive decline (SCD, n = 19), mild cognitive impairment (MCI, n = 39), or AD dementia (n = 27). The following CSF markers were measured: a microglial activation marker—soluble triggering receptor expressed on myeloid cells 2 (sTREM2), a marker of microglial inflammatory reaction—monocyte chemoattractant protein-1 (MCP-1), two astroglial activation markers—chitinase-3-like protein 1 (YKL-40) and clusterin, a neuron-microglia communication marker—fractalkine, and the CSF AD biomarkers (Aβ42, phosphorylated tau (P-tau), total tau (T-tau)). Using ANOVA with planned comparisons, or Kruskal-Wallis tests with Dunn’s pairwise comparisons, CSF levels were compared between clinical groups and between stages of biomarker severity using CSF biomarkers for classification based on amyloid pathology (A), tau pathology (T), and neurodegeneration (N) giving rise to the A/T/N score.ResultsCompared to healthy controls, sTREM2 was increased in SCD (p < .01), MCI (p < .05), and AD dementia cases (p < .001) and increased in AD dementia compared to MCI cases (p < .05). MCP-1 was increased in MCI (p < .05) and AD dementia compared to both healthy controls (p < .001) and SCD cases (p < .01). YKL-40 was increased in dementia compared to healthy controls (p < .01) and MCI (p < .05). All of the CSF activation markers were increased in subjects with pathological CSF T-tau (A+T−N+ and A+T+N+), compared to subjects without neurodegeneration (A−T−N− and A+T−N−).DiscussionMicroglial activation as indicated by increased sTREM2 is present already at the preclinical SCD stage; increased MCP-1 and astroglial activation markers (YKL-40 and clusterin) were noted only at the MCI and AD dementia stages, respectively, and in Aβ+ cases (A+) with pathological T-tau (N+). Possible different effects of early and later glial activation need to be explored.

Highlights

  • Neuronal and glial cell interaction is essential for synaptic homeostasis and may be affected in Alzheimer’s disease (AD)

  • cerebrospinal fluid (CSF) sTREM2, YKL-40, and monocyte chemoattractant protein-1 (MCP-1) were increased at more advanced clinical stages, but differed according to which cognitive stage they showed abnormal levels

  • CSF sTREM2 values were higher in Aβ + subjective cognitive decline (SCD) subjects (t(116) = 3.282, p < .01), Aβ + mild cognitive impairment (MCI) subjects (t(116) = 2.364, p < .05), and subjects with AD dementia (t(116) = 4.213, p < .001), compared to healthy controls

Read more

Summary

Introduction

Neuronal and glial cell interaction is essential for synaptic homeostasis and may be affected in Alzheimer’s disease (AD). We measured cerebrospinal fluid (CSF) neuronal and glia markers along the AD continuum, to reveal putative protective or harmful stage-dependent patterns of activation. Alzheimer’s disease (AD) may be described as a biological continuum that includes the hallmark pathological processes of amyloid-beta (Aβ) dysmetabolism, formation of amyloid deposits (A), neurofibrillary tangles (T), neurodegeneration (N), determined by measuring cerebrospinal fluid (CSF) levels of Aβ42, phosphorylated tau (P-tau), and total tau (T-tau) respectively. The clinical classification of the AD continuum is based on subjective accounts of cognitive deficits, performance on cognitive tests, and functioning in daily life [3,4,5,6]. Mild cognitive impairment (MCI) requires the presence of subjective cognitive decline in combination with impaired cognitive performance yet retaining preserved independence in functional ability [4,5,6]. We and others have made large efforts towards standardization of criteria for these stages, e.g., as part of the EU JPND-funded BIOMARKAPD study, and Norwegian national efforts [7, 8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call