Abstract

Celiac disease is an autoimmune enteropathy caused by a permanent intolerance to gliadins. In this study the effects of two gliadin-derived peptides (PA2, PQPQLPYPQPQLP and PA9, QLQPFPQPQLPY) on TNFalpha production by intestinal epithelial cells (Caco-2) and whether these effects were related to protein kinase A (PKA) and/or -C (PKC) activities have been evaluated. Caco-2 cell cultures were challenged with several sets of gliadin peptides solutions (0.25 mg/mL), with/without different activators of PKA or PKC, bradykinin (Brdkn) and pyrrolidine dithiocarbamate (PDTC). The gliadin-derived peptides assayed represent the two major immunodominant epitopes of the peptide 33-mer of alpha-gliadin (56-88) (LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF). Both peptides induced the TNFalpha production triggering the inflammatory cell responses, the PA2 being more effective. The addition of the peptides in the presence of dibutyril cyclic AMP (cAMP), Brdkn or PDTC, inhibited the TNFalpha production. The PKC-activator phorbol 12-myristate 13-diacetate additionally increased the PA2- and PA9-induced TNFalpha production. These results link the gliadin-derived peptides induced TNFalpha production through cAMP-dependent PKA activation, where ion channels controlling calcium influx into cells could play a protective role, and requires NF-kappaB activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.