Abstract

The downstream cascade of the inflammatory response to gliadin in celiac intestinal mucosa encompasses the early activation of the innate immunity that triggers the adaptive response. Therefore, the in vitro study of the pathogenic mechanism of celiac disease (CD) on enterocytes alone or mucosal T lymphocytes alone does not fully consider all the aspects of gliadin-dependent inflammation. Although the in vitro culture of specimens of intestinal mucosa obtained from celiac patients is the gold standard for the study of CD, this technique presents several technical challenges and the bioptic specimens are not easily available. So, in this paper, we described the gliadin-dependent cytokine production in a bidimensional cellular system, which is able to mimic both the innate and the adaptive steps of the mucosal immune response of CD. In the upper compartment, the intestinal epithelial cells are grown on a filter, and in the lower compartment, the mononuclear cells isolated from peripheral blood of celiac patients are cultured. Cells were apically exposed to the toxic gliadin peptide p31-43 for 3 h and then with the immunodominant gliadin fragment pα-9 for 21 h. The incubation with gliadin peptides resulted in increased levels of IL-15, INF-γ, IL-6, tumor necrosis factor (TNF)-α, IL-1β, and CCL 2, 3 and 4 in the basal supernatants, with respect to cells exposed to medium alone. The p31-43-driven epithelial priming of mucosal response consists of transglutaminase (TG2)-mediated deamidation of the immunostimulatory gliadin peptides, as demonstrated by the inhibition of pα-9 activity, when the system is exposed to blocking anti-TG2 antibody.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.