Abstract

Nanosized colloidal carriers can ensure a controlled and targeted therapeutic substances delivery. The original contribution of this work was to use biopolymers of vegetable source, which are an interesting alternative to synthetic polymers. The aim of this study was to prepare submicronic particles from wheat proteins: Gliadins extracted from gluten. The carrier preparation was based on the desolvatation of the macromolecules by a couple solvent/non-solvent of the proteins. In a first step, it was of interest to elucidate the gliadin macromolecular conformation in order to understand the mechanism of nanoparticle formation. The experimental work was based on SANS experiments. Because the size of the colloidal particle suspension is an important parameter to monitor, the modelization of the particle growth was thoroughly studied. Furthermore, it was observed that the determination of the solubility parameters of the proteins allowed optimization of the size of the particles. From those previous experimental results it can be concluded that there is a correlation between the protein conformation in the solvent and the size of the nanoparticles (NP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.