Abstract

Abstract As Industry 4.0 and digitization continue to advance, the reliance on information technology increases, making the world more vulnerable to cyberattacks, especially cyber-physical attacks that can manipulate physical systems and compromise sensor data integrity. Detecting cyberattacks in multistage manufacturing systems (MMS) is crucial due to the growing sophistication of attacks and the complexity of MMS. Attacks can propagate throughout the system, affecting subsequent stages and making detection more challenging than in single-stage systems. Localization is also critical due to the complex interactions in MMS. To address these challenges, a group lasso regression-based framework is proposed to detect and localize attacks in MMS. The proposed algorithm outperforms traditional hypothesis testing-based methods in expected detection delay and localization accuracy, as demonstrated in a simple linear multistage manufacturing system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.