Abstract

As the core component of video analysis, Temporal Action Localization (TAL) has experienced remarkable success. However, some issues are not well addressed. First, most of the existing methods process the local context individually, without explicitly exploiting the relations between features in an action instance as a whole. Second, the duration of different actions varies widely; thus, it is difficult to choose the proper temporal receptive field. To address these issues, this paper proposes a novel network, GLFormer, which can aggregate short, medium, and long temporal contexts. Our method consists of three independent branches with different ranges of attention, and these features are then concatenated along the temporal dimension to obtain richer features. One is multi-scale local convolution (MLC), which consists of multiple 1D convolutions with varying kernel sizes to capture the multi-scale context information. Another is window self-attention (WSA), which tries to explore the relationship between features within the window range. The last is global attention (GA), which is used to establish long-range dependencies across the full sequence. Moreover, we design a feature pyramid structure to be compatible with action instances of various durations. GLFormer achieves state-of-the-art performance on two challenging video benchmarks, THUMOS14 and ActivityNet 1.3. Our performance is 67.2% and 54.5% AP@0.5 on the datasets THUMOS14 and ActivityNet 1.3, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.