Abstract

The incidence of shoulder complaints in wheelchair users is high and the etiology is poorly understood. The goal of this study was to examine the effect of lesion level and isolated triceps muscle paresis on the internal load on the shoulder by simulation. Kinematic and kinetic profiles from four able-bodied subjects and four subjects with tetraplegia were used as input for an inverse dynamics biomechanical model. The model was modified to simulate lesion level and triceps muscle paresis. The simulations resulted in a significantly higher (+56%) glenohumeral contact force (P=0.037) for tetraplegic profiles than for able-bodied profiles. The model modifications to simulate lesion level only had a minor effect (+7%) on the calculated glenohumeral contact force. More simulations were successful at lower triceps force levels for tetraplegic profiles compared to able-bodied profiles (P=0.012). The muscle forces at the simulated T1 lesion were not significantly higher in tetraplegic profiles compared to able-bodied profiles. The glenohumeral contact force for the tetraplegic profiles is mainly higher due to different task performance. Model modifications only have a minor effect on the calculated glenohumeral contact force. For able-bodied profiles the triceps force seems to be an important factor. The high internal load at the shoulder recommends new techniques of weight relief lifting and proper training of the arm-shoulder muscles in rehabilitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.