Abstract
BackgroundThe purpose of this biomechanical study was to determine the effect of shortened clavicle malunion on the center of rotation of the glenohumeral (GH) joint, and the capacity of repair to restore baseline kinematics.MethodsSix shoulders underwent automated abduction (ABD) and abbreviated throwing motion (ATM) using a 7-DoF automated upper extremity testing system in combination with an infrared motion capture system to measure the center of rotation of the GH joint. ATM was defined as pure lateral abduction and late cocking phase to the end of acceleration. Torsos with intact clavicle underwent testing to establish baseline kinematics. Then, the clavicles were subjected to midshaft fracture followed by kinematics testing. The fractured clavicles underwent repairs first by clavicle length restoration with plate fixation, and then by wiring of fragments with a 2-cm overlap to simulate shortened malunion. Kinematic testing was conducted after each repair technique. Center of rotation of the GH joint was plotted across all axes to outline 3D motion trajectory and area under the curve.ResultsThroughout ABD, malunion resulted in increased posterior and superior translation compared to baseline. Plate fixation restored posterior and superior translations at lower abduction angles but resulted in excess anterior and inferior translation at overhead angles. Throughout ATM, all conditions were significantly anterior and superior to baseline. Translation with malunion was situated anterior to the fractured and ORIF conditions at lower angles of external rotation. Plate fixation did not restore baseline anteroposterior or superoinferior translation at any angle measured.ConclusionsThis study illustrates the complex interplay of the clavicle and the GH joint. While abnormal clavicle alignment alters shoulder motion, restoration of clavicle length does not necessarily restore GH kinematics to baseline. Rehabilitation of the injured shoulder must address the osseous injury and the dynamic forces of the shoulder girdle.
Highlights
Clavicle fractures account for approximately 2–10% of all fractures, with the majority occurring in men between the ages of 13 and 20 years [1,2]
The purpose of this biomechanical study was to determine the effect of shortened clavicle malunion on the center of rotation of the glenohumeral (GH) joint, and the capacity of repair to restore baseline kinematics
Throughout ABD, malunion resulted in increased posterior and superior translation compared to baseline
Summary
Clavicle fractures account for approximately 2–10% of all fractures, with the majority occurring in men between the ages of 13 and 20 years [1,2]. Non-operative treatments forego the need for surgeries that carry the risk of intraoperative and postoperative complications; maintaining alignment and preventing malunion with closed reduction, is virtually impossible [1,6]. The purpose of this biomechanical study was to determine the effect of shortened clavicle malunion on the center of rotation of the glenohumeral (GH) joint, and the capacity of repair to restore baseline kinematics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.