Abstract

Glehnia littoralis has been reported to have several pharmacological properties but no reports describing the antiadipogenic effect of this plant have been published. This study was conducted to investigate the effects of Glehnia littoralis root hot water extract (GLE) and its underlying mechanism on 3T3-L1 cell adipogenesis and in high-fat diet- (HFD-) induced obese mice. We measured intracellular lipid accumulation using oil red O staining in vitro. For in vivo study, twenty-eight C57BL/6J male mice were randomly divided into four groups, Control, HFD, HFD + 1% GLE, and HFD + 5% GLE, which was performed for eight weeks. We determined the expression levels of the adipogenesis-related proteins by RT-PCR and western blotting in HFD-induced obese mice. The GLE dose-dependently inhibited 3T3-L1 adipocyte differentiation and intracellular lipid accumulation in differentiated adipocytes. Further, body weight gain and fat accumulation were significantly lower in the GLE-treated HFD mice than in the untreated HFD mice. GLE treatment suppressed the expression of adipogenic genes such as peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C/EBP) α, fatty acid synthase (aP2), and fatty acid synthase (FAS). These results suggest that the GLE inhibits adipocyte differentiation and intracellular lipid accumulation by downregulating the adipogenic gene expression both in vitro and in vivo.

Highlights

  • The prevalence of obesity has increased dramatically worldwide owing to lifestyle and diet changes and is rapidly becoming a threat to human health

  • We investigated the mechanism underlying the inhibitory effects of Glehnia littoralis root extract (GLE) on adipocyte differentiation in high-fat diet- (HFD-)induced obese mice to determine the potential medicinal benefits of G. littoralis as an antiobesity agent

  • When the composition of the GLE was investigated by comparing its High-Performance Liquid Chromatography (HPLC) profile with that of nine standard compounds including cnidilide, ligustilide, neocnidilide, butylphthalide, senkyunolide, tetramethylpyrazine, caffeic acid, ferulic acid, and perlolyrine eluted under the same conditions, two compounds, namely, caffeic acid and ferulic acid, were identified as the active constituents of the GLE (Figure 1)

Read more

Summary

Introduction

The prevalence of obesity has increased dramatically worldwide owing to lifestyle and diet changes and is rapidly becoming a threat to human health. Obesity has recently attracted increasing attention owing to its association with several metabolic diseases including type II diabetes, cardiovascular disease, and hypertension [1]. Obesity is caused by excess adipose tissue mass, which is the major energy reserve in the body [2]. As the adipose tissue mass can be modulated by inhibiting adipogenesis (differentiation of preadipocytes to mature adipocytes) [3], obesity treatments are usually targeted at suppressing energy or food intake, preadipocyte differentiation and proliferation, and lipogenesis, while increasing energy expenditure, lipolysis, and fat oxidation [4]. Several studies suggest that phytochemical treatments can regulate adipose tissue mass by inhibiting adipogenesis [3, 7, 8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call