Abstract
Although the theory of complex Banach algebras is by now classical, the first systematic exposition of the theory of real Banach algebras was given by Ingelstam [5] as late as 1965. More recently, further attention to real Banach algebras was paid in 1970 [1], where, among other things, the (real) standard algebras on finite open Klein surfaces were introduced. Generalizing these considerations, real uniform algebras were studied in [7] and [6].In the present paper, an attempt is made to develop the theory of real function algebras (see Section 1 for the definition) along the lines of the complex function algebras. Although the real function algebras are not structurally different from the real uniform algebras introduced in [7], they are easier to deal with since their elements are actually (complex-valued) functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.