Abstract

If points in nontrivial Gleason parts of a uniform Banach algebra have unique representing measures, then the weak and the norm topology coincide on the spectrum. We derive from this several consequences about weakly compact homomorphisms and discuss the case of other uniform Banach algebras arising in complex infinite dimensional analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.