Abstract

Pelitic layers and lenses interbedded with blueschists and eclogites in Saih Hatat, NE Oman contain chloritoid- and sodic amphibole-bearing mineral assemblages that are useful for reconstructing the P-T history of the area. Textural and mineral chemical relations suggest that coexisting glaucophane (Gln) and chloritoid (Ctd) formed at the expense of chlorite (Chl)+paragonite (Pg) and later broke down to garnet (Gt)+Pg during prograde metamorphism according to the reaction: Gln+Ctd+Qz=Gt+Pg+H2O. During retrogression, Gln and Chl first formed at the expense of Gt and Pg, followed by the breakdown of Ctd and Gt to Chl. The final stages of retrogression are marked by the breakdown of Gln to an aggregate of Chl+albite (Ab). A projection from quartz (Qz), H2O and phengite (Ph) on the (Al2O3+Fe2O3)-(FeO+MgO)-Na2O plane in the system NFMASH is best suited for the representation of the phase relations in high P metapelites. Petrogenetic grids for the model systems NMASH and NFASH were calculated using program GEO-CALC (Berman et al. 1987) and its database (Berman 1988) after the retrieval of S i o and ΔH f o for Gln and Ctd by mathematical programming and calculating all possible reactions among Gln, Ctd, Chl, jadeite (Jd), Ab, Gt, Pg, talc (Tc), pyrophyllite (Prl) and kyanite (Ky). The calculated petrogenetic grid for the system NFASH shows that Fe-Ctd and ferroglaucophane coexist at P>6.5 kbar and T 6 kbar. This grid is consistent with the P-T estimates for high P metapelites from Oman, New Caledonia, Seward Peninsula, Ile de Groix, Sifnos and Peloponnese, where Gln+Ctd bearing units are interbedded with cofacial mafic blueschists and eclogites. The grid also explains the observed textural relations in the metapelites of Oman, and is consistent with the “clockwise” P-T path proposed for this area, but differs from the grids of Guiraud et al. (1990) in showing a larger stability field for Gln+Ctd that overlaps with the stability fields of Jd+Qz as well as Ab. The petrogenetic grid calculated for the system NMASH shows that Mg-Ctd+Gln-bearing assemblages require unusually low geothermal gradients to form in metapelites. It also shows that Mg-rich Ctd+Tc coexist at high pressures over a wider P-T range than predicted by Guiraud et al. (1990). This grid can therefore be applied to high P metamorphic assemblages from the eastern and western Alps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.