Abstract

Early detection and treatment of glaucoma is of interest as it is a chronic eye disease leading to an irreversible loss of vision. Existing automated systems rely largely on fundus images for assessment of glaucoma due to their fast acquisition and cost-effectiveness. Optical Coherence Tomographic ( OCT ) images provide vital and unambiguous information about nerve fiber loss and optic cup morphology, which are essential for disease assessment. However, the high cost of OCT is a deterrent for deployment in screening at large scale. In this article, we present a novel CAD solution wherein both OCT and fundus modality images are leveraged to learn a model that can perform a mapping of fundus to OCT feature space. We show how this model can be subsequently used to detect glaucoma given an image from only one modality (fundus). The proposed model has been validated extensively on four public andtwo private datasets. It attained an AUC/Sensitivity value of 0.9429/0.9044 on a diverse set of 568 images, which is superior to the figures obtained by a model that is trained only on fundus features. Cross-validation was also done on nearly 1,600 images drawn from a private (OD-centric) and a public (macula-centric) dataset and the proposed model was found to outperform the state-of-the-art method by 8% (public) to 18% (private). Thus, we conclude that fundus to OCT feature space mapping is an attractive option for glaucoma detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call