Abstract

Glaucocalyxin A (GLA) is a biologically active ent-kauranoid diterpenoid isolated from Rabdosia japonica var. glaucocalyx, a traditional Chinese medicinal herb, which has been shown to inhibit tumor cell proliferation. However, the mechanism underlying GLA-induced cytotoxicity remains unclear. In this study, we focused on the effect of GLA induction on apoptosis, the mitochondria-mediated death pathway and the accumulation of reactive oxygen species (ROS) in human leukemia cells (HL-60). GLA could induce a dose-dependent apoptosis in HL-60 cells as characterized by cell morphology, DNA fragmentation, activation of caspase-3, -9 and an increased expression ratio of Bax/Bcl-2. The mitochondrial membrane potential ( Δψ m) loss and cytochrome c release from mitochondria to cytosol were observed during the induction. Moreover, GLA caused a time- and dose-dependent elevation of intracellular ROS level in HL-60 cells, and N-acetyl- l-cysteine (NAC, a well-known antioxidant) could block GLA-induced ROS generation and apoptosis. These data suggest that GLA induces apoptosis in HL-60 cells through ROS-dependent mitochondrial dysfunction pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call