Abstract
The study explored Simarouba glauca DC. for mosquito larvicidal potential by performing bioactivity-guided chemical investigation of its root extract resulting in isolation of the known bioactive metabolite glaucarubinone (1). Mosquito larvicidal activity of glaucarubinone (1) against the three vector species viz. Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined using a modified WHO 2005 protocol. It was observed that Culex quinquefasciatus larvae were the most susceptible species with LC50 13.88 ppm and LC90 70.01 ppm followed by Aedes aegypti and Anopheles stephensi at 24 h of exposure. The mode of action as observed microscopically is the lysis of midgut and thorax cells of the third instar larvae. The crystal structure of the glaucarubinone (1) is reported for the first time using X-ray crystallography. This phytochemical product has the potential to act as a green alternative to existing chemical-based insecticides for integrated vector management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.