Abstract

CpG oligodeoxynucleotides are toll-like receptor 9 agonists capable of inducing potent pro-inflammatory immune responses. Although CpG oligodeoxynucleotides have shown promising antitumor effects, their systemic activity can trigger immune-related toxicity, limiting therapeutic application. We previously identified glatiramer acetate (GA), a cationic polypeptide approved for the treatment of relapsing-remitting multiple sclerosis, as an intratumoral delivery agent capable of complexing with CpG, thereby pinning it to the injection site and limiting systemic exposure. Here, we investigated whether the combination of CpG or GA-CpG polyplexes and intraperitoneal anti-PD-1 therapy would result in synergistic efficacy in AT84 and CT26 murine syngeneic models of head and neck and colon cancers, respectively. In both AT84 and CT26 tumor models, intratumoral CpG or GA-CpG treatment similarly suppressed tumor growth, but the efficacy was not amplified with anti-PD-1. Nevertheless, combination treatment increased cytotoxic T cell, helper T cell, and natural killer cell infiltration into AT84 tumors. Surprisingly, the combination of intratumoral GA and intraperitoneal anti-PD-1 treatment resulted in elevated systemic GM-CSF and IL-2 cytokine levels and demonstrated synergistic antitumor effects in the CT26 mouse tumor model. Moreover, tumors that responded most significantly to anti-PD-1 plus GA treatment showed increased markers of infiltration of CD4+ T cells and natural killer cells. Combinations of intratumoral GA or GA-CpG polyplexes with anti-PD-1 treatment warrant further investigation as combination cancer immunotherapy strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.