Abstract

We explore the possibility of describing experimental susceptibility spectra of the glass former propylene carbonate with a two-component schematic model of mode-coupling theory (MCT) from above the melting point down to temperatures far below the critical temperature of MCT. By introducing a phenomenological time-dependent hopping rate, the spectra are reproduced in the full frequency and temperature range available. Literature data of dielectric susceptibilities and depolarized Brillouin light-scattering spectra are combined with our measurements of photon correlation spectroscopy to cover up to 18 decades in frequency of spectra for two different dynamical variables. A consistent description of all data sets is obtained by adjusting only a few physically motivated parameters. In particular the excess wing or slow β-relaxation commonly observed in the susceptibility spectra can consistently be modeled as originating from a coupling of the individual experimental probe correlator to the collective density fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call