Abstract

Reductive activation of six-coordinate Pt(IV) complexes to afford square-planar Pt(II) complexes has exhibited surprisingly divergent and unpredictable cathodic peak potentials during cyclic voltammetry (CV) measurements under widely employed experimental conditions. A systematic, detailed investigation reveals that glassy carbon (GC) electrodes are responsible for this erratic behavior. More reproducible CVs are obtained with platinum metal electrodes, which display cathodic responses at much more positive potentials. The unreliable and negatively shifted peak potentials observed at GC are attributed to a non-uniform oxide layer that is formed on the electrode surface causing slow electron transfer. A simple procedure of repetitive scanning to reducing potentials is found to be effective for cleaning and activating the GC surface, such that it exhibits the more consistent and accurate peak potential responses seen with a Pt electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.