Abstract
In the present study, a 3D porous graphene-carbon nanotube (G-CNT) network is successfully constructed on the surface of glassy carbon electrode (GCE) by electrochemical co-deposition from a concentrated graphene dispersion. The large accessible surface area provided by the interpenetrated graphene backbone in one hand and the enhanced electrical conductivity of the 3D network by incorporating CNTs on the other hand, dramatically improved the electrochemical performance of GCE in determination of Methotrexate (MTX) as an important electroactive drug compound. Under the optimum conditions, the electrode modification led to a significant increase in the anodic peak current (∼25 times) along with a considerable shift in the peak potential (∼111mV). Voltammetric investigations revealed that the proposed method can determine MTX in a wide dynamic linear range with a low detection limit of 70nM. Moreover, good sensitivity and high accuracy of the prepared modified electrode in voltammetric detections of MTX, which was further confirmed by UV–vis spectroccopy and HPLC methods, make it very suitable for accurate determinations of MTX in pharmaceutical formulations (commercial tablets) and clinical preparations (blood serum) with excellent recoveries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.