Abstract

We contrast the generic features of structural relaxation close to the idealized glass transition that are predicted by the self-consistent generalized Langevin equation theory (SCGLE) against those that are predicted by the mode-coupling theory of the glass transition (MCT). We present an asymptotic solution close to conditions of kinetic arrest that is valid for both theories, despite the different starting points that are adopted in deriving them. This in particular provides the same level of understanding of the asymptotic dynamics in the SCGLE as was previously done only for MCT. We discuss similarities and different predictions of the two theories for kinetic arrest in standard glass-forming models, as exemplified through the hard-sphere system. Qualitative differences are found for models where a decoupling of relaxation modes is predicted, such as the generalized Gaussian core model, or binary hard-sphere mixtures of particles with very disparate sizes. These differences, which arise in the distinct treatment of the memory kernels associated to self- and collective motion of particles, lead to distinct scenarios that are predicted by each theory for partially arrested states and in the vicinity of higher-order glass-transition singularities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.