Abstract

Polarized (VV) and depolarized (VH) Raman spectra are obtained for glassy, supercooled, and molten TeO2 at temperatures up to 1000 K in order to elucidate the temperature evolution of the pertinent structural and vibrational properties. The intrinsic tendency of the system for crystallization is avoided by means of a newly applied protocol, thereby enabling the recording of Raman spectra of pure TeO2 on going from the molten to the supercooled liquid and to the room temperature glass states. Following an appropriate fitting procedure, the revealed bands are assigned to specific modes of structural polymorphs. A weak polarised band at ∼880 cm(-1) is assigned to Te=O terminal stretching in agreement with the literature ab initio molecular orbital calculations. Subtle changes to the relative band intensities within the 550-900 cm(-1) stretching region are caused by temperature increase. The network-like structure of the glass/melt is composed by TeO4 trigonal bipyramid and TeO3 trigonal pyramid units. With increasing temperature, TeO4 units convert to TeO3 units with a concurrent increase in the number of Te=O sites resulting from cleavages within the network structure. The fraction of such terminal oxygen atoms has been directly estimated from the spectroscopic data. The relative populations of the basic building blocks and the average number of O atoms around Te have been estimated for a wide temperature range directly from the Raman spectra, implying a gradual transformation of TeO(4/2) to TeO(2/2)(= O) trigonal pyramid units. The results are discussed in the context of the current phenomenological and theoretical status of the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call