Abstract

Automatic glasses detection on real face images is a challenging problem due to different appearance variations. Nevertheless, glasses detection on face images has not been thoroughly investigated. In this paper, an innovative algorithm for automatic glasses detection based on Robust Local Binary Pattern and robust alignment is proposed. Firstly, images are preprocessed and normalized in order to deal with scale and rotation. Secondly, eye glasses region is detected considering that the nosepiece of the glasses is usually placed at the same level as the center of the eyes in both height and width. Thirdly, Robust Local Binary Pattern is built to describe the eyes region, and finally, support vector machine is used to classify the LBP features. This algorithm can be applied as the first step of a glasses removal algorithm due to its robustness and speed. The proposed algorithm has been tested over the Labeled Faces in the Wild database showing a 98.65 % recognition rate. Influences of the resolution, the alignment of the normalized images and the number of divisions in the LBP operator are also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.