Abstract

Glass-ceramics are nanocomposite materials which offer specific characteristics of capital importance in photonics. This kind of two-phase materials is constituted by nanocrystals embedded in a glass matrix and the respective composition and volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramic. Among these properties transparency is crucial, in particular when confined structures, such as dielectric optical waveguides, are considered, and several works have been devoted to this topic. Another important point is the role of the nanocrystals when activated by luminescent species, as rare earth ions, and their effect on the spectroscopic properties of the glass-ceramic. The presence of the crystalline environment around the rare earth ion allows high absorption and emission cross sections, reduction of the non-radiative relaxation thanks to the lower phonon cut-off energy, and tailoring of the ion-ion interaction by the control of the rare earth ion partition. Fabrication, assessment and application of glass-ceramic photonic systems, especially waveguides, deserve an appropriate discussion which is the aim of this paper, focused on luminescent glass-ceramics. In this work, a brief historical review, consolidated results and recent advances in this important scientific and technological area will be presented, and some perspectives will be outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.