Abstract
Light-weight structure is one of the keys to improve the fuel efficiency and reduce the environmental burden of transport vehicles (automotive and rail). While fibreglass composites have been increasingly used to replace steel in automotive industry, the adoption rate for carbon fibre composites which are much lighter, stronger and stiffer than glass fibre composites, remains low. The main reason is the high cost of carbon fibres. To further reduce vehicle weight without excessive cost increase, one technique is to incorporate carbon fibre reinforcement into glass fibre composites and innovative design by selectively reinforcing along the main load path. Glass/carbon woven fabrics with epoxy resin matrix were utilised for preparing hybrid composite laminates. The in-plane mechanical properties such as tensile and three-point-bending flexural properties were investigated for laminates with different carbon fibre volume and lay-up scheme. It is shown that hybrid composite laminates with 50 % carbon fibre reinforcement provide the best flexural properties when the carbon layers are at the exterior, while the alternating carbon/glass lay-up provides the highest compressive strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.