Abstract

ABSTRACTRecently, there has been significant interest in measuring the glass transition temperature (Tg) of thin polymer films floated atop liquid substrates. However, such films still have intrinsically asymmetric interfaces, that is, a free surface and a liquid–polymer interface. In an effort to analyze the influence of different liquids on the Tg of confined polymers in which there is no interfacial asymmetry, a colloidal suspension of polystyrene (PS) nanoparticles (NPs) was employed. The Tgs of PS NPs suspended in either glycerol or an ionic liquid were characterized using differential scanning calorimetry. Nanoparticles suspended in an ionic liquid showed an invariance of Tg with confinement, that is, decreasing diameter. In contrast, nanoparticles suspended in glycerol showed a slight decrease in Tg with confinement. The dependence of NP Tg on the nature of the surrounding liquid exhibited a positive correlation with the interfacial energy of the liquid–PS interface and no correlation with interfacial softness, as measured by viscosity. A comparison of the results with thin films supported by liquid or solid substrates revealed a nontrivial interplay between interfacial softness and interfacial interactions on the Tg of confined PS. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1776–1783

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.