Abstract

In this article, ZnS nanoparticles were prepared by wet chemical precipitation method using zinc sulphate (ZnSO4), sodium sulphide (Na2S) and thio-glycerol. These nanoparticles were characterized through X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The solution-based processing was used to prepare Poly methyl methacrylate (PMMA) nanocomposites with different weight percents (0, 2, 4, 6 and 8) of ZnS nanoparticles. The obtained ZnS/PMMA nanocomposites were characterized through XRD, scanning electron microscope and TEM measurements. The dynamic mechanical analyzer was used to obtain the storage modulus and glass transition temperature (T g) of the nanocomposites. The apparent activation energy of the glass transition region was also determined using the Vogel–Fulcher–Tammann equation. The results indicated that the thermal stability of ZnS/PMMA nanocomposites was higher than PMMA and 6 wt. % of ZnS nanoparticles in PMMA matrix showed the maximum activation energy, which indicated that this nanocomposite had higher thermal stability than other composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.