Abstract

We numerically investigate the dynamical properties of the one-component Gaussian core model in supercooled states. We find that nucleation is increasingly suppressed with increasing density. The system concomitantly exhibits glassy, slow dynamics characterized by the two-step stretched exponential relaxation of the density correlation and a drastic increase of the relaxation time. We also find a weaker violation of the Stokes-Einstein relation and a smaller non-Gaussian parameter than in typical model glass formers, implying weaker dynamic heterogeneities. Additionally, the agreement of the simulation data with the prediction of mode-coupling theory is exceptionally good, indicating that the nature of the slow dynamics of this ultrasoft particle fluid is mean-field-like. This fact may be understood as a consequence of the long-range nature of the interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.