Abstract

The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using the Kissinger method. Results indicate that this glass crystallizes by a three-stage reaction: (1) phase separation and primary crystallization of glass, (2) formation of intermetallic compounds, and (3) decomposition of intermetallic compounds and crystallization of residual amorphous phase. The pressure effect on crystallization is studied by in situ high-pressure and high-temperature XRD using synchrotron radiation. Two crystallization temperatures, observed by in-situ XRD, behave differently with varying pressure. The onset crystallization temperature increases with pressure with a slope of 9.5 K/GPa in the range of 0 to 4.4 GPa, while the another crystallization temperature keeps almost unchanged in the applied pressure range. The results are attributed to the competing processes between the thermodynamic potential barrier and the diffusion activation energy under pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.