Abstract
The dramatic increase of environmental pollution leads to the demand of new sampling strategies that could perform in-situ monitoring and rapid identification. In this regard, Surface Enhanced Raman Spectroscopy is a good candidate among the possible analytical techniques. Thus, enormous efforts are in course to select best nanoplatforms able to maximize the SERS effect and in turn to reach the lowest limit of pollutant detection. In this work, we investigated the SERS response of colloidal gold nanostars (GNS) coated with a layer of silver with increasing thickness. In particular, we observed a maximum in the SERS signal at a precise silver thickness. The so-optimized GNS@Ag were used to prepare glass supported SERS substrates, displaying good enhancement factor and high homogeneity intra sample. We also evaluate the reproducibility on large-scale production, demonstrating again a good homogeneity of the response and the overall goodness of the substrates. Our glassy SERS-active chips were fruitfully used to detect norfloxacin and thiram, as representative of harmful and toxic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.