Abstract

A family of TeO2-based glasses is known to have high third-order nonlinear properties and expected as nonlinear optical devices. In the present study, we fabricated Ag2O-TeO2 and Ag2O-Nb2O5-TeO2 glasses, and estimated their structures and linear/nonlinear optical properties. The main results showed that the absorption-edge of the glasses was shifted to longer wavelength side with increasing Ag2O content. By Raman spectroscopy, it was found that an increase in Ag2O content promoted to change TeO4 to TeO3/TeO3+1 units. X-ray photoelectron spectroscopy (XPS) revealed the presence of an electronic state of Ag2+ ions, which was supposed to have a large influence on the absorption-edge wavelength. In Ag2O-Nb2O5-TeO2 glass system, the third-order nonlinear susceptibility χ(3) increased with increasing Ag2O content at the expense of Nb2O5 content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call