Abstract

Structure and stability of glass of monatomic Lennard–Jones (LJ) system at nanoscale compared with those of the bulk counterparts have been studied using the classical molecular dynamics (MD) method. Models have been obtained by cooling from the melts. Structure of the systems was analyzed via radial distribution function (RDF), interatomic distances, the Honeycutt–Andersen analysis and coordination number distributions. Surface and core structures of LJ nanoparticles have been analyzed in details. Density dependence and cooling rate effects on structure of the systems have been found and discussed. In addition, size dependence of structure and properties of nanoparticles has been analyzed in detail. Indeed, we found glass formation in monatomic LJ systems; however, their stability is not high. Evolution of structure and thermodynamics of the systems upon cooling from the melts was found. We also discussed annealing-induced crystallization of LJ glass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call