Abstract

The interactions between CO(2) and D(2)O molecules have been investigated by using time-of-flight secondary ion mass spectrometry in the temperature rage 13-120 K. The monolayer of CO(2) tends to wet or intermix with the D(2)O film below 40 K and dewets the surface above 60 K. The water nanoclusters deposited on the CO(2) multilayers also start to segregate at 50-60 K and are finally incorporated in the bulk at 85-90 K, where the morphology of the film changes abruptly together with the desorption rate of the CO(2) molecules. The break at 85 K should be caused by the occurrence of the fluidized film whereas the glass-transition temperature of CO(2), as determined from the onset of translational molecular diffusion, is assigned to 50 K. This behavior may be related to the ultraviscous nature of the supercooled liquid, arising from the decoupling between the translational molecular diffusion and viscosity. The He(+) irradiation of the mixed CO(2)-D(2)O ice and the D(2)(+) irradiation of the CO(2) ice at 13 K do not yield any surface residues assignable to H(2)CO(3) and its precursors above 100 K. This result may be related to the segregation between the CO(2) and D(2)O molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call