Abstract

AbstractUltrafast time‐domain thermoreflectance (TDTR) is utilized to extract the through‐plane thermal conductivity (ΛLSCO) of epitaxial La0.5Sr0.5CoO3−δ (LSCO) of varying thickness (<20 nm) on LaAlO3 and SrTiO3 substrates. These LSCO films possess ordered oxygen vacancies as the primary means of lattice mismatch accommodation with the substrate, which induces compressive/tensile strain and thus controls the orientation of the oxygen vacancy ordering (OVO). TDTR results demonstrate that the room‐temperature ΛLSCO of LSCO on both substrates (1.7 W m−1 K−1) are nearly a factor of four lower than that of bulk single‐crystal LSCO (6.2 W m−1 K−1). Remarkably, this approaches the lower limit of amorphous oxides (e.g., 1.3 W m−1 K−1 for glass), with no dependence on the OVO orientation. Through theoretical simulations, origins of the glass‐like thermal conductivity of LSCO are revealed as a combined effect resulting from oxygen vacancies (the dominant factor), Sr substitution, size effects, and the weak electron/phonon coupling within the LSCO film. The absence of OVO dependence in the measured ΛLSCO is rationalized by two main effects: (1) the nearly isotropic phononic thermal conductivity resulting from the imperfect OVO planes when δ is small; (2) the missing electronic contribution to ΛLSCO along the through‐plane direction for these ultrathin LSCO films on insulating substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.