Abstract

Ceramic insulation coating (glass film) is an important constituent of grain-oriented electrical steel (GOES) designed for use in transformers. Within the scope of this study, the glass film was obtained by means of interaction between the surface of GOES containing 0.5 wt. % Cu and a heat-resistant MgO coating during annealing up to 1100 °C in the 75%H2 + 25%N2 atmosphere. The structure of glass film was analyzed using X-ray diffraction, glow-discharge optical emission spectroscopy, scanning probe microscopy, scanning electron microscopy, differential scanning calorimetry and thermodynamic calculations. After annealing, the glass film contained the following phases: crystalline (MgFe)2SiO4 and amorphous Fe-based solid solutions. The multi-stage mechanism of the glass film formation on GOES surface during high-temperature annealing was determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.