Abstract

The aim of this study is to evaluate the shear and fatigue behavior of asphalt concrete (AC) overlay on Portland cement concrete (PCC) pavement with different interlayer bonding materials, including modified emulsified asphalt (MEA) membranes, modified asphalt (MA) membranes, glass fiber reinforced modified emulsified asphalt (GFMEA) membranes and glass fiber reinforced modified asphalt (GFMA) membranes. An in-house shearing device was used to evaluate the shear behavior between asphalt layer and PCC layer. An orthogonal experimental design was performed to determine the impact of each influential factor on the interlayer shear behavior, including the testing temperature, the bonding material, and the confinement pressure applied during the tests. The results indicate that AC overlay on PCC pavement can reach its optimal performance in terms of shear toughness when the GFMA is used at the interlayer. Four-point bending fatigue tests were conducted on the AC beam with interlayers using the Material Test System (MTS). The fractal dimension (FD) of fatigue cracks in AC overlay was analyzed using image measurements. The results show that the AC beam with the GFMA has a longer fatigue life. Therefore, it is concluded that the GFMA can strengthen bonding and mitigate reflection cracking of AC overlay on PCC pavements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call